Surface and intracellular Fas expression associated with cytokine-induced apoptosis in rodent islet and insulinoma cells

Author:

Augstein P,Wachlin G,Berg S,Bahr J,Salzsieder C,Hehmke B,Heinke P,Salzsieder E

Abstract

During the process of insulitis in the pathogenesis of type I (insulin-dependent) diabetes mellitus, proinflammatory cytokines induce expression of the death receptor Fas on the surface of pancreatic beta-cells and thereby contribute to the enhanced susceptibility of beta-cells for apoptosis. The aim of this study was to compare cell-surface and intracellular Fas expression associated with cytokine-induced apoptosis in commonly used beta-cell models such as isolated islets and insulinoma lines derived from mouse and rat. The cell line NIT-1 responded to the interleukin (IL)-1beta+interferon (IFN)-gamma stimulus with translocation of Fas to the cell surface. Likewise, islet cells from non-obese diabetic (NOD) mice and BB/OK rats expressed increasing amounts of the Fas receptor on their surfaces after exposure to IL-1beta in combination with IFN-gamma and tumour necrosis factor-alpha. Moreover, islets obtained from BB/OK rats at an age near the onset of diabetes had an increased surface expression of Fas compared with young rats. In contrast, western blot analysis of cell lysates from cytokine-exposed islets and insulinoma cells revealed total Fas expression levels comparable to those of untreated controls. In conclusion, islets from BB/OK rats and NOD mice, in addition to NIT-1 insulinoma cells, responded to cytokine exposure with surface expression of the Fas receptor, whereas in cell lysates the levels of expression of Fas were found to be independent of cytokine exposure. Taken together, the findings indicate that cytokine-treated beta-cells might possess two pools of Fas protein, one of which is inducible by cytokines and accounts for surface Fas expression, whereas the other is constitutively expressed in cytoplasmic compartments. The underlying mechanisms, including possible interactions between these two sources of cellular Fas expression, need to be investigated in future studies.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3