Quantification of mRNA for the vitamin D metabolizing enzymes CYP27B1 and CYP24 and vitamin D receptor in kidney using real-time reverse transcriptase- polymerase chain reaction

Author:

Anderson PH,O'Loughlin PD,May BK,Morris HA

Abstract

Critical to an understanding of the control of 1,25-dihydroxyvitamin D (1,25D) activity is a molecular appreciation of the regulation of three genes, 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1), 25-hydroxyvitamin D-24-hydroxylase (CYP24) and vitamin D receptor (VDR). We now report the sensitivity, reproducibility and accuracy of a real-time reverse transcriptase-polymerase chain reaction protocol (Taqman) for the quantification of mRNA levels for these genes in total RNA extracted from kidney tIssue. The sensitivity of the protocol was at least 150 copies of mRNA per reaction. Reproducibility, expressed as the coefficient of variation, ranged between 14 and 30% at the level of approximately 10(4) copies of mRNA per reaction. Accuracy was estimated at greater than 95% for each of these mRNAs. This protocol allows for the comparison of absolute mRNA levels in extracted total RNA in kidneys from animals fed diets containing different levels of calcium, ranging from 0.05% to 1%. Serum 1,25D levels were decreased when the dietary calcium concentration was increased (P<0.05). The levels of CYP27B1 mRNA were highest in the animals fed the 0.05% calcium diet (P<0.01). Conversely, CYP24 and VDR mRNA levels were highest in the animals fed the 1% calcium diet (P<0.01). Both CYP27B1 and CYP24 mRNA levels were major determinants of serum 1,25D levels when dietary calcium intakes were varied in these adult animals (Multiple R(2)=0.70, P<0.01). No significant relationship was detected between kidney CYP27B1 and serum parathyroid hormone (PTH) suggesting that serum calcium may regulate CYP27B1 mRNA expression directly during normocalcaemia. Low levels of CYP24 mRNA were associated with high PTH levels. These findings suggest that kidney CYP24 activity, possibly regulated by factors such as PTH, acts in concert with kidney CYP27B1 to control serum 1,25D levels.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3