Dopaminergic regulation of avian prolactin gene transcription

Author:

Al Kahtane A,Chaiseha Y,El Halawani M

Abstract

It is well documented that prolactin (PRL) release and PRL gene expression in birds are controlled by the tonic stimulation of hypothalamic vasoactive intestinal peptide (VIP). However, there is good evidence that dopamine (DA) exerts both stimulatory (at the hypothalamic level) and inhibitory (at the pituitary level) effects on PRL secretion. The interactions between VIP and DA in the regulation of PRL gene transcription are not known. This study was designed to examine the effects of a D(2) DA receptor agonist (D(2)AG; R(-)-propylnorapomorphine HCl) on basal and VIP-stimulated PRL gene transcription rate, PRL mRNA steady-state levels, PRL mRNA stability and PRL release from cultured turkey anterior pituitary cells. The D(2)AG (10(-)(10) M) completely inhibited the stimulatory effect of VIP (10(-)(7) M) upon nascent PRL mRNA as determined utilizing a nuclear run-on transcription assay. To examine further the effect of the D(2)AG on PRL mRNA post-transcriptional events, anterior pituitary cells were treated with different concentrations of D(2)AG (10(-)(12)-10(-)(4) M). Semi-quantitative RT-PCR and RIA were performed to determine the levels of PRL mRNA and PRL content in the medium respectively. The results show that D(2)AG inhibited VIP-stimulated PRL mRNA steady-state levels as well as basal and VIP-stimulated PRL release, effects which were diminished by the D(2) DA receptor antagonist, S(-)-eticlopride HCl (10(-)(10) M). Actinomycin D (5 microg/ml), an inhibitor of mRNA synthesis, was used to assess the effect of D(2)AG on PRL mRNA stability in response to VIP. The stimulatory effect of VIP on PRL mRNA stability was completely negated by the D(2)AG (from a half-life of 53.0+/-2.3 h in VIP-treated cells to 25.5+/-1.6 h in D(2)AG+VIP-treated cells, P<or=0.05). These results support the hypothesis that VIP and DA play a major role in the regulation of PRL gene expression in avian species, at both the transcriptional and post-transcriptional levels. In addition, these findings suggest that the DAergic system inhibits PRL release and synthesis by antagonizing VIP at the pituitary level via D(2) DA receptors.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3