Comparison of peptide release from fetal rat hypothalamic neurones cultured in defined media and serum-containing media

Author:

Clarke M. J. O.,Gillies G. E.

Abstract

ABSTRACT Primary cultures of rat hypothalamic neurones were maintained either in a serum-supplemented medium or in a serum-free chemically defined medium for up to 6 weeks. The release of the 41 amino acid-containing peptide, corticotrophin-releasing factor (CRF-41), vasopressin (AVP) and somatostatin (SRIF) were followed using immunoassays. In response to K+ (56 mmol/l) depolarization both the quantities of peptides released and the magnitude of responses were significantly greater from cultures maintained in the fully supplemented defined medium. As a consequence, release of CRF-41 and AVP could be measured directly, without requiring the concentration step necessary for cultures grown in serum. The response to K+ depolarization increased with the age of the culture, suggesting neuronal maturation. Responses to K+ depolarization were Ca2+-dependent, and the addition of corticosterone (100 nmol/l) to the defined medium caused a significant reduction in the response of neurones secreting CRF-41 and AVP, but not those secreting SRIF, to depolarization. This suggests the retention in vitro of the responsiveness of stress-associated neuropeptides to the negative feedback effects of corticosterone. Neurones producing CRF-41 and AVP responded significantly in a dose-dependent manner to acetylcholine stimulation, whereas those producing SRIF did not. As cultures matured, the CRF-41- and AVP-producing neurones became more sensitive to acetylcholine with the maximal response at 1 nmol acetylcholine/1. In conclusion, the culture of rat hypothalamic neurones is improved in terms of peptide output when the cultures are maintained in a defined medium. Differential responses of the peptidergic neurones may be seen in the presence of corticosterone and neurotransmitters, illustrating the retention in vitro of specific receptor-mediated responses which have been observed in vivo. This model should prove useful in the further study of the physiological, pharmacological and biochemical maturation and control of peptidergic neurones. J. Endocr. (1988) 116, 349–356

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3