Ascorbic acid potentiates the inhibitory effect of dopamine on prolactin release in primary cultured rat pituitary cells

Author:

Shin S. H.,Stirling R.

Abstract

ABSTRACT The chemical structure of dopamine includes an ortho-catechol group which is labile to oxidizing agents. Ascorbic acid, a reducing agent, has in the past been added to the incubation medium in order to protect dopamine against oxidation. However, there has been no thorough examination of the biological effect of ascorbic acid on prolactin release. In this present study we have shown that ascorbic acid has neither a stimulatory nor an inhibitory effect on prolactin release but reduces by approximately two orders of magnitude the concentration of dopamine necessary to inhibit prolactin release from cultured anterior pituitary cells. The strong potentiation effect of ascorbic acid was reproduced using apomorphine. We compared the effect of ascorbic acid and isoascorbic acid on dopamine inhibition of prolactin release. Isoascorbic acid is an epimer of ascorbic acid, having the same reduction–oxidation potential as ascorbic acid, but is less biologically active. Isoascorbic acid was less effective in potentiating the dopaminergic effect than was ascorbic acid, which supports the notion that potentiation by ascorbic acid is not entirely due to its reducing property. In order to dissociate further the chemical protection of dopamine from the biological potentiation, the inhibitory effects of freshly made and 3-h-old dopamine solutions were compared. Neither one of the two solutions contained any ascorbic acid, yet the two solutions did not show any difference in their ability to inhibit prolactin release during the 3-h incubation period, indicating that no significant amount of dopamine was oxidized. The minimum effective concentration of ascorbic acid necessary to demonstrate potentiation was between 0·001 and 0·01 mmol/l. The potentiation effect was shown after 1, 2, or 3 h of exposure to dopamine, and was evident in both 2- and 6-day-old cultured cells. The effect of ascorbic acid can either be a pharmacological potentiation or a physiological effect on the primary cultured pituitary cells. However, it is quite clear that ascorbic acid is not a simple anti-oxidant but produces a strong potentiating effect on the dopaminergic inhibition of prolactin release by some other means. J. Endocr. (1988) 118, 287–294

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3