An in-situ isolated rat adrenal perfusion system for study of neurally mediated catecholamine secretion: effects of morphine, a Met-enkephalin analogue, and naloxone on catecholamine secretion

Author:

Bouloux P.-M. G.,Perrett D.,Sopwith M.,Besser G. M.

Abstract

ABSTRACT An in-situ isolated rat adrenal perfusion technique has been devised to study the opioid control of neurally mediated adrenomedullary catecholamine release. Adrenomedullary catecholamine secretion was induced by electrical stimulation of the cut end of the left descending thoracic sympathetic chain on platinum electrodes. The half-maximal stimulatory potential (ED50) of the system was 8 V, 20 Hz, with 300μs pulse width. Basal release of catecholamine from the adrenal was constant using a perfusion flow rate of 100–300μl/min, but increased significantly with increasing perfusion temperature over the range 36–38 °C. Following repetitive 30-s stimulation of the left thoracic sympathetic chain, and 3-min fraction collections, the total amount of catecholamine released per fraction remained within 80–100% of the maximum release for up to eight consecutive stimuli. The release of catecholamines was completely blocked by hexamethonium (0·1 mmol/l), but recovered to preblockade values within two further stimuli. Using the ED50 and the first three stimuli as control, the effects of morphine (10 nmol/l–1 mmol/l), d-Ala2-MePhe4-Met-enkephalin-(O5)-ol (DAMME; 10 nmol/l–0·1 mmol/l) and naloxone (10 nmol/l– 10 μmol/l) on the response to the next three stimuli were compared. Morphine, DAMME or naloxone did not significantly alter the amount of catecholamine released by this form of stimulation. Therefore in the rat, under the conditions used, there is no evidence for mu (μ) or delta (†) opiate modulation of neurally mediated catecholamine release from the rat adrenal medulla. J. Endocr. (1986) 111, 7–15

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3