Receptor-binding characteristics and contractile responsiveness of the myometrium following prolonged infusion of bradykinin and oxytocin in rats

Author:

Engstrom T.,Atke A.,Vilhardt H.

Abstract

ABSTRACT Binding of [3H]oxytocin to purified myometrial plasma membranes was unaffected by continuous infusion of bradykinin over 5 days in rats pretreated with oestradiol 2 days before collection of tissue. In contrast, oxytocin treatment resulted in a 76% decrease in maximal binding of [3H]oxytocin and thereby in oxytocin receptor concentration without affecting the dissociation constant. The KM value (molar concentration giving half maximal contraction) of isolated uterine strips stimulated with oxytocin was increased and maximal contractile responses were reduced following oxytocin infusions. The binding of [3H]bradykinin to purified plasma membranes was influenced by treatment with both oxytocin and bradykinin. Bradykinin infusions down-regulated the bradykinin receptor concentration by 19%, while the receptor affinity remained unchanged. Maximal contraction (Emax) values of isolated strips stimulated with bradykinin exhibited a slightly attenuated response and KM values were significantly enhanced. Long-term treatment with oxytocin down-regulated myometrial bradykinin receptors by 31%. In addition, oxytocin infusions caused Emax to decrease and KM to increase in experiments with isolated uterine strips stimulated with bradykinin. It is concluded that the down-regulation of oxytocin and bradykinin receptors following prolonged exposure to oxytocin may result from changes in a common pathway for intracellular peptide receptor processing. Likewise, the increased KM values of isolated myometrial strips (despite unchanged dissociation constants) suggest that prolonged oxytocin treatment affects the coupling between receptor activation and contractile response. J. Endocr. (1988) 118, 81–85

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3