Effect of hydrogen ion concentration on aldosterone secretion by isolated perfused canine adrenal glands

Author:

Radke K. J.,Taylor R. E.,Schneider E. G.

Abstract

ABSTRACT The direct effects of changes in extracellular hydrogen ion (H+) concentration on aldosterone secretion under basal, angiotensin II- and potassium-stimulated conditions were studied in isolated, perfused canine adrenal glands. Changes in extracellular H+ concentration were induced by altering either the partial pressure of CO2 (pCO2) or the HCO3 concentration of the perfusate. Acid-base disturbances had a more pronounced effect on aldosterone secretion under stimulated than under basal conditions. Increasing H+ concentration enhanced angiotensin II- and potassium-stimulated aldosterone secretion, whereas decreasing H+ concentration markedly inhibited the secretory response to these stimuli. Because changes in H+ concentration, whether produced by varying extracellular pCO2 or extracellular HCO3 concentration, had similar effects on angiotensin II-stimulated aldosterone secretion, the data suggest that H+ concentration per se is the important determinant of the aldosterone secretory rate. Interestingly, during the immediate recovery period from pCO2-induced alkalosis under both angiotensin II- and potassium-stimulated conditions, aldosterone secretion always returned to a value significantly higher than that obtained just before alkalosis. The results of this study demonstrate that changes in extracellular H+ concentration influence the rate of aldosterone secretion, possibly via changes in intracellular pH, by a direct action on the canine adrenal gland. Therefore, when evaluating the control of aldosterone secretion, the acid-base status of the whole animal or of in-vitro adrenal tissue must be considered. J. Endocr. (1986) 110, 293–301

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3