Estrogen can signal through multiple pathways to regulate oocyte cyst breakdown and primordial follicle assembly in the neonatal mouse ovary

Author:

Chen Ying,Breen Kelsey,Pepling Melissa E

Abstract

During mouse embryonic development, oocytes develop in germline cysts, formed by several rounds of cell division followed by incomplete cytokinesis. Shortly after birth, cysts break down and individual oocytes are enclosed by granulosa cells to form primordial follicles. At the same time, two-thirds of the oocytes die by apoptosis with only one-third surviving. We have previously shown that the steroid hormones, estradiol (E2), and progesterone as well as the phytoestrogen genistein can inhibit cyst breakdown and primordial follicle assembly. However, the mechanisms by which steroid hormones regulate oocyte cyst breakdown and selective oocyte survival are unknown. Here, we confirmed the expression of estrogen receptor (ER) mRNA and protein in neonatal mouse ovaries using reverse transcriptase-PCR, western blotting, and immunocytochemistry. We then used ER-specific agonists and antagonists to understand the mechanism of estrogen signaling. 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol, an ERα-selective agonist, and 2,3-bis(4-hydroxyphenyl)-propionitrile, an ERβ-selective agonist, both inhibited cyst breakdown in organ culture, suggesting that E2 can signal through both the receptors to regulate cyst breakdown. ICI 182,780, an ER antagonist, completely blocked E2's action. 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride, an ERα-specific antagonist, fully blocked E2's effect on oocyte cyst breakdown and primordial follicle assembly and (R,R)-5,11-diethyl-5,6,11,12-tetrahydro-2,8-chrysenediol, an ERβ-specific antagonist, partially blocked E2, further supporting the idea that both receptors are involved in estrogen signaling in neonatal oocyte development. E2 conjugated to BSA, which can only exert effects at the membrane, was able to inhibit cyst breakdown, implying that E2 could also function through a membrane-bound ER to regulate cyst breakdown.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3