Antizyme is necessary for conversion of pancreatic tumor cells into glucagon-producing differentiated cells

Author:

Suzuki Jun-ichiro,Murakami Yasuko,Samejima Keijiro,Ohtani Kohfuku Kohda Masahiro,Oka Takami

Abstract

Human pancreatic tumor cell lines – AsPC-1, PANC-1, MIA paca2, KP-1 and KP-59 cells – can be induced to differentiate into pancreatic hormone-producing cells by brief trypsin treatment and subsequent culture in a serum-free, chemically defined medium. During culture, AsPC-1 cells formed cell clusters resembling the pancreatic islets, expressed genes associated with the pancreatic development and produced glucagon but not insulin. When PANC-1, MIA paca2, KP-1 and KP-59 cells were treated and cultured the same way, they underwent similar morphological changes and produced insulin and glucagon. We used these systems to identify intracellular regulatory molecules involved in the conversion of pancreatic tumor cells into glucagon-producing cells. We found that the expression of antizyme 1 (AZ1), a negative regulator of ornithine decarboxylase, was increased and its localization was altered from the nucleus to the cytoplasm during AsPC-1 cell differentiation. Transient transfection of AsPC-1 cells with AZ1 siRNA resulted in inhibition of the morphological and functional cell differentiation as well as the specific suppression of AZ1 expression. By contrast, constitutive overexpression of AZ1 in AsPC-1 cells led to the enhancement of glucagon production. We also found that PANC-1 cells reduced the expression of glucagon mRNA when treated with AZ1 siRNA. These results suggested that AZ1 was necessary for the conversion of pancreatic tumor cells into glucagon-producing cells. Glucagon production in AsPC-1 cells was not affected by addition of putrescine, suggesting that the polyamines were not directly involved in the AZ1-mediated conversion of pancreatic tumor cells to differentiated state.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3