Abstract
Biological oscillations with an endogenous period of near 24 h (circadian rhythms) are generated by the master circadian pacemaker or clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus. This clock is synchronised to recurring environmental signals conveyed by selective neural pathways. One of the main chemical constituents of SCN neurones is vasoactive intestinal polypeptide (VIP). Such neurones are retinorecipient and activated by light. Exogenous application of VIP resets the SCN circadian clock in a light-like manner, both in vivo and in vitro. These resetting actions appear to be mediated through the VPAC2 receptor (a type of receptor for VIP). Unexpectedly, genetically ablating expression of the VPAC2 receptor renders the circadian clock arrhythmic at the molecular, neurophysiological and behavioural levels. These findings indicate that this intrinsic neuropeptide acting through the VPAC2 receptor participates in both resetting to light and maintenance of ongoing rhythmicity of the SCN.
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献