Possible roles for stanniocalcin during early skeletal patterning and joint formation in the mouse

Author:

Stasko SE,Wagner GF

Abstract

Stanniocalcin (STC) is a polypeptide hormone discovered first in fish and more recently in mammals. In mammals, the gene is widely expressed and the hormone is, so far, known to be involved in regulating the transport of calcium or phosphate across renal and gut epithelia, and into neuronal cells. Gene expression is also high during development, and in an earlier study we mapped the temporal and spatial pattern of gene expression in the mouse urogenital system. Our data suggested that STC probably acted as a signaling molecule that was produced in mesenchyme cells and targeted to epithelial cell layers in both kidney and testes. Here we have examined STC mRNA and protein distributions between developmental stages E10.5 and E18.5 in the axial and appendicular skeleton. In the axial skeleton, STC was transiently expressed in a rostral-caudal fashion during vertebral development; protein appeared to be made in intervertebral disc mesenchyme cells and targeted to vertebral hypertrophic and prehypertrophic chondrocytes. By stage E18.5, the STC gene was active only in vertebral perichondrocytes. The pattern of expression in the appendicular skeleton was equally striking. Early in development, STC gene expression defined the initial lengths of bone primordia. The gene was expressed in mesenchyme cells at either ends of precartilaginous condensations defining future long bones and the secreted protein was targeted to the chondroblasts. Later on during joint formation, STC was highly expressed in interzone cells that defined all future joints. After cavitation, STC gene expression was greatest in perichondrocytes lining the joints. Underlying resting, proliferative and prehypertrophic chondrocytes appeared to be the targets of STC both during and after cavitation. Therefore, its pattern of expression was indicative of a role in early skeletal patterning and joint formation. Moreover, as occurs during urogenital development, it appeared that STC is made in undifferentiated mesenchyme cells and sequestered by those destined to differentiate.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3