Regulation of rat Sertoli cell function by FSH: possible role of phosphatidylinositol 3-kinase/protein kinase B pathway

Author:

Meroni SB,Riera MF,Pellizzari EH,Cigorraga SB

Abstract

The FSH molecular mechanism of action is best recognized for its stimulation of the adenylyl cyclase/cAMP pathway via activation of a G protein. Recently, links between cAMP, phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB) signaling pathways in thyroid and granulosa cells have been observed. The aim of this study was to investigate the possible role of the PI3K/PKB pathway in FSH regulation of Sertoli cell function. Twenty-day-old rat Sertoli cell cultures were used. An increase in phosphorylated PKB (P-PKB) levels in response to FSH and dibutyryl-cAMP was observed. These increments in P-PKB levels were not observed in the presence of two PI3K inhibitors, wortmannin and Ly 294002. Inhibition of protein kinase A (PKA) by H89 did not decrease FSH stimulation of P-PKB levels. Taken together, these results indicate that FSH increases P-PKB levels in a PI3K-dependent and PKA-independent manner in rat Sertoli cells. In addition, wortmannin partially inhibited the ability of FSH to stimulate two well-known parameters of Sertoli cell function - transferrin secretion and lactate production - at doses equal to or lower than 0.1 microM. Related to lactate production, a decrease in FSH stimulation of lactate dehydrogenase activity and of basal and FSH-stimulated glucose uptake was observed in the presence of wortmannin. These metabolic changes were in most cases accompanied by changes in the levels of P-PKB. Altogether, these results suggest a meaningful role of the PI3K/PKB pathway in the mechanism of action of FSH in rat Sertoli cells.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3