Expression of the progesterone receptor and progesterone- metabolising enzymes in the female and male human kidney

Author:

Bumke-Vogt C,Bahr V,Diederich S,Herrmann SM,Anagnostopoulos I,Oelkers W,Quinkler M

Abstract

Due to high binding affinity of progesterone to the human mineralocorticoid receptor (hMR), progesterone competes with the natural ligand aldosterone. In order to analyse how homeostasis can be maintained by mineralocorticoid function of aldosterone at the MR, especially in the presence of elevated progesterone concentrations during the luteal phase and pregnancy, we investigated protective mechanisms such as the decrease of free progesterone by additional binding sites and progesterone metabolism in renal cells. As a prerequisite for sequestration of progesterone by binding to the human progesterone receptor (hPR) we demonstrated the existence of hPR expression in female and male kidney cortex and medulla at the level of transcription and translation. We identified hPR RNA by sequencing the RT-PCR product and characterised the receptor by ligand binding and scatchard plot analysis. The localisation of renal hPR was shown predominantly in individual epithelial cells of distal tubules by immunohistology, and the isoform hPR-B was detected by Western blot analysis. As a precondition for renal progesterone metabolism, we investigated the expression of steroid-metabolising enzymes for conversion of progesterone to metabolites with lower affinity to the hMR. We identified the enzyme 17alpha-hydroxylase for renal 17alpha-hydroxylation of progesterone. For 20alpha-reduction, different hydroxysteroid dehydrogenases (HSDs) such as 20alpha-HSD, 17beta-HSD type 5 (3alpha-HSD type 2) and 3alpha-HSD type 3 were found. Further, we detected the expression of 3beta-HSD type 2 for 3beta-reduction, 5alpha-reductase (Red) type 1 for 5alpha-reduction, and 5beta-Red for 5beta-reduction of progesterone in the human kidney. Therefore metabolism of progesterone and/or binding to hPR could reduce competition with aldosterone at the MR and enable the mineralocorticoid function.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3