Prevention of solely estrogen-induced mammary tumors in female aci rats by tamoxifen: evidence for estrogen receptor mediation

Author:

Li SA,Weroha SJ,Tawfik O,Li JJ

Abstract

There is increasing evidence that both endogenous and exogenously ingested estrogens play a primary role in sporadic breast cancer causation. To establish further that solely estrogen-induced mammary oncogenesis in female ACI rats is an estrogen receptor (ERalpha)-driven process, we show for the first time that concomitant treatment with the antiestrogen, tamoxifen citrate (TAMc), completely prevents the induction of 17beta-estradiol (E(2))-induced mammary gland tumors (MGTs). This finding is also supported by the reduced mammary gland (MG) lobulo-alveolar development and proliferative activity observed in TAMc+E(2)-treated animals compared with MGs from animals treated with E(2) alone. These data also correlated with a marked decrease in the number of MG cells expressing ERalpha and progesterone receptor (PR) in immunostained MG tissue sections from TAMc+E(2)-treated animals. Additionally, a marked decline in the level of expression of ERalpha 47, 56 and 66 kDa forms, and PR-A and PR-B was seen in TAMc+E(2)-treated MGs, compared with MGs treated solely with E(2). Thus, both ERalpha and PR MG profiles in TAMc+E(2)-treated rats essentially revert to their respective receptor profiles seen in untreated control and TAMc-alone-treated rats. The presence of 56 and 54 kDa isoforms in chronically E(2)-treated MGs and in MGTs respectively may contribute to fostering the enhanced E(2)-dependent growth response of both precursor and frank MGT epithelial cells. These findings are consistent with an ERalpha/PR-mediated mg cell proliferation, a prerequisite for generating the high frequency of chromosomal instability seen in E(2)-induced ductal carcinomas in situ and primary MGTs in female ACI rats reported by us previously.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3