Truncated equine LH beta and asparagine(56)-deglycosylated equine LH alpha combine to produce a potent FSH antagonist

Author:

Butnev VY,Singh V,Nguyen VT,Bousfield GR

Abstract

Hybrid hormone preparations were prepared by combining intact and Asn(56)-deglycosylated (N(56)dg) equine (e) LH or FSH alpha subunit preparations with truncated, des(121-149)eLH beta (eLH beta t), immunopurified, intact eLH beta or equine chorionic gonadotropin beta (eCG beta) preparations, and eFSH beta. The LH receptor-binding potencies of N(56)dg-eLH alpha:eLH beta t and N(56)dg-eFSH alpha:eLH beta t hybrids were equivalent to that of eLH; however, both N(56)dg-alpha preparations were only 3-4% as active as eLH in the rat testis Leydig cell bioassay. In the granulosa cell FSH bioassay, eLH alpha:eLH beta t stimulated progesterone synthesis and induced aromatase activity, while N(56)dg-eLH alpha:eLH beta t was completely inactive at doses up to 5 microg. N(56)dg-eLH alpha:eLH beta t inhibited progesterone production and aromatase induction elicited by 0.3 ng eFSH or 2 ng human (h) FSH. The inhibitory activities of N(56)dg-eLH alpha:eLH beta and N(56)dg-eCG alpha:eLH beta t were only 10% that of N(56)dg-eLH alpha:eLH beta t. N(56)dg-eLH alpha:eCG beta did not inhibit progesterone synthesis stimulated by eFSH at all and appeared to further stimulate aromatase induction at the highest dose tested. Preincubation of N(56)dg-eLH alpha:eLH beta and N(56)dg-eLH alpha:eLH beta t for 72 h at 37 C resulted in no loss of FSH receptor-binding activity. Preincubation resulted in 50% loss of receptor-binding activity by the eFSH preparation due to subunit dissociation, while 88% of N(56)dg-eLH alpha:eFSH beta activity was lost following 72 h, 37 C preincubation. While alpha Asn(56) oligosaccharide had no effect on eLH beta hybrid stability, it did contribute to the stability of the eFSH heterodimer.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3