Calcitonin decreases the adherence and survival of HEK-293 cells by a caspase-independent mechanism

Author:

Findlay DM,Raggatt LJ,Bouralexis S,Hay S,Atkins GJ,Evdokiou A

Abstract

We recently reported that calcitonin (CT) can profoundly inhibit the growth of HEK-293 cells transfected with the human calcitonin receptor (hCTR). We also obtained preliminary evidence that suggested a role for CT in cell survival, and in the present study we have investigated the pro-apoptotic action of CT, which we observe in conditions of low serum concentration. Under these conditions, we have found that CT treatment of HEK-293 cells stably transfected with the insert-negative form of the human CTR (HR12 cells) caused a time-dependent decrease in cell number associated with loss of cellular attachment. Loss of cellular adherence in CT-treated cultures caused programmed cell death, as shown by Annexin V staining of cells, failure of cells to exclude Trypan Blue dye, condensation and cleavage of nuclear DNA, and appearance of hypodiploid cells in fluorescence-activated cell sorting (FACS) analysis. The accumulation of non-adherent cells and cell death was concomitant with increased intracellular activity of caspase-3. However, inhibition of caspase activation in HR12 cells did not prevent CT-mediated loss of attachment and did not maintain the viability of non-adherent cells, indicating that caspase activation accompanied, but was probably not the cause of, the loss of cell viability. Neither the effects of CT on cell survival nor the activation of caspase-3 were observed in serum-replete conditions, suggesting that serum-derived factors provide protection of cells from CT-induced apoptosis. The inhibitory effects of CT on cell growth were found previously to be related to activation of Erk1/2 MAP kinase. In the present experiments, it was found that the Erk1/2 inhibitor, PD 98059, inhibited the CT-induced loss of cellular adherence and the consequent reduction in cell numbers. These results demonstrate that CT can negatively affect cell survival and they identify roles for cell adherence and MAP kinase activation in this process.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3