Mechanisms involved in the beta-cell mass increase induced by chronic sucrose feeding to normal rats

Author:

Del Zotto H,Gomez Dumm CL,Drago S,Fortino A,Luna GC,Gagliardino JJ

Abstract

The aim of the present study was to clarify the mechanisms by which a sucrose-rich diet (SRD) produces an increase in the pancreatic beta-cell mass in the rat. Normal Wistar rats were fed for 30 weeks either an SRD (SRD rats; 63% wt/wt), or the same diet but with starch instead of sucrose in the same proportion (CD rats). We studied body weight, serum glucose and triacylglycerol levels, endocrine tissue and beta-cell mass, beta-cell replication rate (proliferating cell nuclear antigen; PCNA), islet neogenesis (cytokeratin immunostaining) and beta-cell apoptosis (propidium iodide). Body weight (g) recorded in the SRD rats was significantly (P<0.05) larger than that of the CD group (556.0+/-8.3 vs 470.0+/-13.1). Both serum glucose and triacylglycerol levels (mmol/l) were also significantly higher (P<0.05) in SRD than in CD rats (serum glucose, 8.11+/-0.14 vs 6.62+/-0.17; triacylglycerol, 1.57+/-0.18 vs 0.47+/-0.04). The number of pancreatic islets per unit area increased significantly (P<0.05) in SRD rats (3.29+/-0.1 vs 2.01+/-0.2). A significant increment (2.6 times) in the mass of endocrine tissue was detected in SRD animals, mainly due to an increase in the beta-cell mass (P=0.0025). The islet cell replication rate, measured as the percentage of PCNA-labelled beta cells increased 6.8 times in SRD rats (P<0.03). The number of apoptotic cells in the endocrine pancreas decreased significantly (three times) in the SRD animals (P=0.03). The cytokeratin-positive area did not show significant differences between CD and SRD rats. The increase of beta-cell mass induced by SRD was accomplished by an enhanced replication of beta cells together with a decrease in the rate of beta-cell apoptosis, without any evident participation of islet neogenesis. This pancreatic reaction was unable to maintain serum glucose levels of these rats at the level measured in CD animals.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3