Insight into the physiological actions of thyroid hormone receptors from genetically modified mice

Author:

O'Shea PJ,Williams GR

Abstract

Thyroid hormones exert a range of developmental and physiological actions in all vertebrates. Serum concentrations of L-thyroxine (T4) and 3,5,3 -L-triiodothyronine (T3) are maintained by a negative feedback loop involving T3-inhibition of hypothalamic thyrotrophin releasing hormone (TRH) and pituitary thyroid stimulating hormone (TSH) secretion, and by tissue specific and hormone-regulated expression of the three iodothyronine deiodinase enzymes that activate or metabolise thyroid hormones. T3 actions are mediated by two T3-receptors, TRalpha and TRbeta, which act as hormone-inducible transcription factors. The TRalpha (NR1A1) and TRbeta (NR1A2) genes encode mRNAs that are alternatively spliced to generate 9 mRNA isoforms (TRalpha1, alpha2, alpha3, Deltaalpha1, Deltaalpha2, beta1, beta2, beta3 and Deltabeta3), of which four (TRalpha1, alpha2, beta1 and beta2) are known to be expressed at the protein level in vivo. The numerous TR mRNAs are expressed widely in tissue- and developmental stage-specific patterns, although it is important to note that levels of mRNA expression may not correlate with receptor protein concentrations in individual tissues. The TRalpha2, alpha3, Deltaalpha1 and Deltaalpha2 transcripts encode proteins that fail to bind T3 in vitro. These non-binding isoforms, in addition to TRDeltabeta3 which does bind hormone, may act as dominant negative antagonists of the true T3-binding receptors in vitro, but their physiological functions and those of the TRbeta3 isoform have not been determined. In order to obtain a new understanding of the complexities of T3 action in vivo and the role of TRs during development, many mouse models of disrupted or augmented thyroid hormone signalling have been generated. The aim of this review is to provide a picture of the physiological actions of thyroid hormones by considering the phenotypes of these genetically modified mice.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3