Desensitization of the adrenocorticotrophin responses to arginine vasopressin and corticotrophin-releasing hormone in ovine anterior pituitary cells

Author:

Hassan A,Chacko S,Mason D

Abstract

Following repeated or prolonged exposure to either corticotrophin-releasing hormone (CRH) or arginine vasopressin (AVP), pituitary adrenocorticotrophin (ACTH) responsiveness is reduced. This study compared the characteristics of desensitization to CRH and AVP in perifused ovine anterior pituitary cells. Desensitization to AVP occurred at relatively low AVP concentrations and was both rapid and readily reversible. Treatment for 25 min with AVP at concentrations greater than 2 nM caused significant reductions in the response to a subsequent 5 min 100 nM AVP pulse (IC(50)=6.54 nM). Significant desensitization was observed following pretreatment with 5 nM AVP for as briefly as 5 min. Desensitization was greater following a 10 min pretreatment, but longer exposures caused no further increase. Resensitization was complete within 40 min following 15 min treatment with 10 nM AVP. Continuous perifusion with 0.01 nM CRH had no effect on AVP-induced desensitization. Treatment with 0.1 nM CRH for either 25 or 50 min caused no reduction in the response to a subsequent 5 min stimulation with 10 nM CRH. When the pretreatment concentration was increased to 1 nM significant desensitization was observed, with a greater reduction in response occurring after 50 min treatment. Recovery of responsiveness was progressive following 50 min treatment with 1 nM CRH and was complete after 100 min. Our data show that in the sheep AVP desensitization can occur at concentrations and durations of AVP exposure within the endogenous ranges. This suggests that desensitization may play a key role in regulating ACTH secretion in vivo. If, as has been suggested, CRH acts to set corticotroph gain while AVP is the main dynamic regulator, any change in responsiveness to CRH may significantly influence the overall control of ACTH secretion.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3