Thyroid hormone stimulation of osteocalcin gene expression in ROS 17/2.8 cells is mediated by transcriptional and post-transcriptional mechanisms

Author:

Gouveia CH,Schultz JJ,Bianco AC,Brent GA

Abstract

We investigated the mechanism of thyroid hormone regulation of osteocalcin (OC) gene expression in osteoblast-like cells (ROS 17/2.8). Treatment with tri-iodothyronine (T3) (10(-8) M) increased OC mRNA levels by approximately 3-fold after 24 h and reached a maximum, approximately 5.4-fold, after 48 h. The mRNA levels of other bone-specific genes, alkaline phosphatase and osteopontin, were not affected by T3 treatment. Interestingly, T3 induction of OC mRNA varied according to cell density: approximately 4-fold at approximately 1x10(5) cells/dish and 1.5-fold at 40-60x10(5) cells/dish. The magnitude of OC mRNA induction by T3 was approximately 40% lower than induction by 1,25 dihydroxyvitamin D3 (1,25D3) alone, and the combination of T3+1,25D3 did not further stimulate OC mRNA levels. T3 induction of OC mRNA was not affected by treatment with cycloheximide (10 microg/ml) for 5 h indicating that new protein synthesis is not required for the response. To study the half-life of OC mRNA, ROS 17/2.8 cells were incubated with actinomycin D. The basal half-life of OC mRNA (means+/-s.e.m.) was 6.4+/-0.2 h which was increased significantly with either T3 or 1,25D3 treatment to 10.9+/-0.6 h and 13.5+/-0.4 h respectively. T3 modestly up-regulated the rate of OC gene transcription (1.7+/-0.2-fold) as determined by run-off assay. T3 did not induce a reporter construct containing the rat OC gene (rOC) 5'-flanking region (to -1750 bp) or the previously described rOC vitamin D response element, when transfected into ROS 17/2.8 cells. In conclusion, T3 up-regulates the OC mRNA expression in ROS 17/2.8 cells in a dose-, time- and cell confluence-dependent fashion, and does so by transcriptional and post-transcriptional mechanisms. The greater T3 induction of OC expression in ROS 17/2.8 cells at low cell density is consistent with findings of thyroid hormone action on bone development.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3