Signalling, cycling and desensitisation of gonadotrophin-releasing hormone receptors

Author:

McArdle CA,Franklin J,Green L,Hislop JN

Abstract

Sustained stimulation of G-protein-coupled receptors (GPCRs) typically causes receptor desensitisation, which is mediated by phosphorylation, often within the C-terminal tail of the receptor. The consequent binding of beta-arrestin not only prevents the receptor from activating its G protein (causing desensitisation), but can also target it for internalisation via clathrin-coated vesicles and can mediate signalling to proteins regulating endocytosis and mitogen-activated protein kinase (MAPK) cascades. GnRH acts via phospholipase C (PLC)-coupled GPCRs on pituitary gonadotrophs to stimulate a Ca(2+)-mediated increase in gonadotrophin secretion. The type I GnRH receptors (GnRH-Rs), found only in mammals, are unique in that they lack C-terminal tails and apparently do not undergo agonist-induced phosphorylation or bind beta-arrestin; they are therefore resistant to receptor desensitisation and internalise slowly. In contrast, the type II GnRH-Rs, found in numerous vertebrates, possess such tails and show rapid desensitisation and internalisation, with concomitant receptor phosphorylation (within the C-terminal tails) or binding of beta-arrestin, or both. The association with beta-arrestin may also be important for regulation of dynamin, a GTPase that controls separation of endosomes from the plasma membrane. Using recombinant adenovirus to express GnRH-Rs in Hela cells conditionally expressing a dominant negative mutant of dynamin (K44A), we have found that blockade of dynamin-dependent endocytosis inhibits internalisation of type II (xenopus) GnRH-Rs but not type I (human) GnRH-Rs. In these cells, blockade of dynamin-dependent internalisation also inhibited GnRH-R-mediated MAPK activation, but this effect was not receptor specific and therefore not dependent upon dynamin-regulated GnRH-R internalisation. Although type I GnRH-Rs do not desensitise, sustained activation of GnRH-Rs causes desensitisation of gonadotrophin secretion, and we have found that GnRH can cause down-regulation of inositol (1,4,5) trisphosphate receptors and desensitisation of Ca(2+) mobilisation in pituitary cells. The atypical resistance of the GnRH-R to desensitisation may underlie its atypical efficiency at provoking this downstream adaptive response. GnRH-Rs are also expressed in several extrapituitary sites, and these may mediate direct inhibition of proliferation of hormone-dependent cancer cells. Infection with type I GnRH-R-expressing adenovirus facilitated expression of high-affinity, PLC-coupled GnRH-R in mammary and prostate cancer cells, and these mediated pronounced antiproliferative effects of receptor agonists. No such effect was seen in cells transfected with a type II GnRH-R, implying that it is mediated most efficiently by a non-desensitising receptor. Thus it appears that the mammalian GnRH-Rs have undergone a period of rapidly accelerated molecular evolution that is of functional relevance to GnRH-Rs in pituitary and extrapituitary sites.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 152 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Male Reproductive Endocrinology;Men's Reproductive and Sexual Health Throughout the Lifespan;2023-11-16

2. The use of a 4.7 mg deslorelin slow release implant in male dogs in the field;Tierärztliche Praxis Ausgabe K: Kleintiere / Heimtiere;2023-08

3. Physiological and pharmacological overview of the gonadotropin releasing hormone;Biochemical Pharmacology;2023-06

4. Role of gonadotropin‐releasing hormone‐II and its receptor in swine reproduction;Molecular Reproduction and Development;2022-12-21

5. Discovery of Small Molecule Agonist of Gonadotropin-Releasing Hormone Receptor (GnRH1R);Journal of Chemical Information and Modeling;2022-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3