Bimodal inhibition of connexin 43 gap junctions decreases ACTH-induced steroidogenesis and increases bovine adrenal cell population growth

Author:

Shah US,Murray SA

Abstract

In order to elucidate the role of gap junctions in adrenal cell responses, we measured the effect of inhibiting gap junctions with 18-alpha glycerrhetinic acid (GA; a potent inhibitor of cell-cell communication) and connexin antisense transfection on cell proliferation and adrenocorticotropin (ACTH)-stimulated steroidogenesis. In these experiments we utilized a bovine adrenocortical cell (SBAC) population, which responds to ACTH treatment with a dose-dependent increase in steroid production, an increase in connexin 43 (alpha(1)-Cx43) gap junction protein concentrations, and a decrease in cell population growth. SBAC cell populations treated with GA had increased growth rates, decreased ACTH-stimulated steroidogenesis, but no reduction in alpha(1)-Cx43 gap junction protein contents. In contrast, when SBAC cells were transfected with alpha(1)-Cx43 antisense cDNA, gap junction protein concentration was dramatically reduced as expected, unlike the GA-treated cell populations. Cell populations transfected with alpha(1)-Cx43-antisense also exhibited increased growth rates and a decreased steroidogenic response to ACTH treatment as compared with control or vector-only transfected cell populations. The decreased responsiveness and increased number of cells in the population after gap junction function was decreased by either GA treatment or antisense transfection, suggests that gap junctions may be necessary factors in ACTH-stimulated responsiveness and growth control in the adrenal gland.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gap junction proteins are key drivers of endocrine function;Biochimica et Biophysica Acta (BBA) - Biomembranes;2018-01

2. Adrenocortical Gap Junctions and Their Functions;Frontiers in Endocrinology;2016-06-29

3. Molecular mechanisms regulating formation, trafficking and processing of annular gap junctions;BMC Cell Biology;2016-05-24

4. Roles of connexins and pannexins in (neuro)endocrine physiology;Cellular and Molecular Life Sciences;2015-06-18

5. Connexins modulate autophagosome biogenesis;Nature Cell Biology;2014-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3