Endogenous vasopressin contributes to hypothalamic-pituitary-adrenocortical alterations in aged rats

Author:

Hatzinger M,Wotjak CT,Naruo T,Simchen R,Keck ME,Landgraf R,Holsboer F,Neumann ID

Abstract

The ageing process in animals and humans is thought to be accompanied by a gradual impairment of corticosteroid receptor function, which is reflected by increased pituitary-adrenocortical hormone secretion at baseline and a number of aberrant neuroendocrine function test results. The latter include the ACTH and corticosteroid responses to a combined dexamethasone (DEX)/corticotropin-releasing hormone (CRH) challenge. The excessive hormonal response to this test among aged individuals has been taken as indirect evidence of enhanced endogenous arginine vasopressin (AVP) release, which - together with peripherally administered CRH - is capable of overriding DEX-induced ACTH suppression. The current study was designed to explore the role of endogenous AVP in mediating excessive hypothalamic-pituitary-adrenocortical (HPA) activity in ageing. The combined DEX/CRH test was administered to aged (22-24 months old) Wistar rats and the effect of the AVP type 1 (V1) receptor antagonist, d(CH(2))(5)Tyr(Me)AVP, on ACTH release was studied. Infusion of the V1 receptor antagonist after DEX pretreatment and before CRH administration prevented the CRH-induced rise in ACTH secretion in comparison with vehicle-treated aged rats (area under the concentration-time curve: 699+/-479 versus 2896+/-759; P<0.01). This difference was absent in young (3 months old) control rats. In situ hybridization showed an increased number of AVP mRNA-expressing neurons in the parvocellular but not the magnocellular, portion of the hypothalamic paraventricular nucleus in DEX-pretreated aged rats. The number and synthetic activity of parvocellular neurons expressing CRH mRNA was also increased. We have concluded that the increased HPA activity in aged rats involves enhanced synthesis and release of AVP from parvocellular neurons, possibly secondary to impaired corticosteroid receptor function.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3