Lipid peroxidation levels in rat cardiac muscle are affected by age and thyroid status

Author:

Shinohara R,Mano T,Nagasaka A,Hayashi R,Uchimura K,Nakano I,Watanabe F,Tsugawa T,Makino M,Kakizawa H,Nagata M,Iwase K,Ishizuki Y,Itoh M

Abstract

Free radicals, hydroxyperoxides and H(2)O(2) are all known to damage cell components. This study was designed to compare the concentrations of hydroxyperoxide and free radical scavengers in the cardiac muscles of old rats in the hyper- or hypothyroid condition, to determine whether rates of peroxidation would differ with age, thyroid status, or both. Rats were rendered hyper- or hypothyroid by administration of l-thyroxine or methimazole for 4 weeks. Among the old rats, the lipid peroxide (LPO) concentrations, measured as thiobarbituric acid (TBA) reactants, were significantly greater in the hyperthyroid than in the euthyroid state and the LPO concentrations measured as TBA+Fe(3+) reactants, which may be precursors of LPO, were significantly greater in the hyperthyroid state, whereas in young rats, the LPO concentrations measured by TBA or TBA+Fe(3+) methods did not differ significantly in the hyperthyroid state. In the euthyroid state, the concentration of LPO measured as TBA+Fe(3+) reactants was significantly reduced with age. Xanthine oxidase (XOD) activity also was markedly increased with age, being more pronounced in the hyperthyroid than in the euthyroid state. The Mn and Cu/Zn superoxide dismutase activities were greater in the hyperthyroid than in the euthyroid state. Glutathione peroxidase activity decreased with age in the euthyroid and, particularly, in the hyperthyroid state. Catalase activity was not affected in the old rats. Concentrations of alpha-tocopherol in the old rats were high in the hyperthyroid state and low in the hypothyroid state, whereas the levels of beta- and gamma-tocopherols in these rats were unchanged in both conditions as compared with the euthyroid state findings. Data suggest that the site of free radical generation differs in older rats, with additional shifts in the location of intracellular lipid peroxidation being noted during hyperthyroidism. Thus, as rats age, the reduction of the free radical scavenger system and the increase in LPO and XOD activities might induce myocardial dysfunction.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3