Characterisation of the IGF system in a primary adult human skeletal muscle cell model, and comparison of the effects of insulin and IGF-I on protein metabolism

Author:

Crown AL,He XL,Holly JM,Lightman SL,Stewart CE

Abstract

In an attempt to address the complex and clinically challenging question of the causes of muscle wasting in patients with cachexia, we have developed a primary adult human skeletal muscle cell model. The cultured cells were characterised by immunocytochemistry using antibodies to the myofibrillar protein constituents desmin and titin. Myotube formation was confirmed biochemically by a fourfold increase in the activity of the muscle-specific enzyme creatinine kinase, and myoblast withdrawal from the cell cycle, which is essential for terminal differentiation, was associated with progressive retinoblastoma protein dephosphorylation. Having successfully confirmed the phenotype of these adult human muscle cells, we assessed their interaction with the insulin-like growth factor (IGF) system. IGF-I is known to stimulate myoblast survival, proliferation and differentiation in cell lines, and, like insulin, is a potent anabolic agent in the regulation of protein metabolism. We have shown that IGF-I stimulated both replication and differentiation of myoblasts, whilst fibroblast growth factor-2 stimulated replication but inhibited differentiation. Examining the IGF system during the process of terminal differentiation, we found that both myoblasts and myotubes expressed insulin, IGF-I and insulin-IGF-I hybrid receptors, with the levels of all three receptor types increasing on differentiation. The cells also produced a wide range of IGF binding proteins (IGFBPs) including IGFBP-2, IGFBP-4 and abundant IGFBP-3, which has not been shown to be produced by any other skeletal muscle cell line examined to date. Both insulin and IGF-I had anabolic effects on myotube protein metabolism at physiological concentrations. Insulin was more potent than IGF-I: use of the IGF analogue long R(3)IGF-I demonstrated that the effects of exogenous IGF-I on protein metabolism were not affected by the high levels of endogenous IGFBP production. In summary, we have developed and characterised a clinically relevant in vitro model with which to address the aetiology of muscle wasting associated with chronic catabolic conditions, and we anticipate that future work will enable the development of novel, effective therapeutic interventions.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3