The role of growth hormone and glucocorticoid in glucose handling in vivo

Author:

Johansen T,Deckert M,Mandrup-Poulsen T,Malmlof K

Abstract

Growth hormone (GH) can oppose the catabolic effects of glucocorticoids. However, both hormones have adverse effects on carbohydrate metabolism. Here we examined the interactive effects of GH and the glucocorticoid methylprednisolone (MP) on glucose tolerance, insulin resistance and [3H]2,6-deoxyglucose uptake of peripheral tissues in rats. Female Wistar rats received either saline, GH (2.7 mg/kg), MP (5.0 mg/kg) or GH+MP. After 7 days treatment, animals were subjected to an i.v. glucose tolerance test. In a second experiment, animals treated as above were anesthetized and injected with human insulin (0.5 U/kg), [3H]2,6-deoxyglucose (500 microCi/kg), and [14C]mannitol (25 microCi/kg), to estimate insulin resistance and [3H]2,6-deoxyglucose uptake in fat and muscle. Weight gain in controls was 7.6+/-1.7 g, while GH treatment increased the mean body weight by 18.7+/-2.2 g (P<0.0002) and MP inhibited weight gain down to 0.0+/-1.0 g (P<0.004). This drop in weight gain was reversed back to normal when GH was given in combination with MP. After a glucose tolerance test no significant differences in glucose area under the curve were detected when comparing individual groups with the control group, but samples taken just before this test revealed that basal insulin was significantly elevated in the group treated with GH (174+/-27 pM, P<0.008), or GH+MP (209+/-21 pM, P<0.004), when compared with controls (107+/-17 pM). MP alone had no effect (122+/-19, P<0.3). After an i.v. bolus of insulin the group receiving GH+MP had a significantly (P<0.007) higher level of circulating glucose compared with controls (6.5+/-0.3 mM vs 4.4+/-0.7 mM). Despite this, there were no differences in peripheral glucose uptake between the two groups. In conclusion this study shows that a combined administration of GH and MP decreases the potency by which insulin decreases circulating glucose levels, but that peripheral tissues are not primarily involved in this insulin resistance.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3