GH gene expression in the submaxillary gland in normal and Ames dwarf mice

Author:

Perez-Romero A,Dialynas E,Salame F,Amores A,Vidarte L,Bartke A,Ariznavarreta C,Tresguerres JA

Abstract

High local GH-releasing hormone (GHRH) levels are capable of inducing transdifferentiation in salivary cells to synthesize GH. However, the factors implicated in this process remain unknown. To study this subject, normal and Ames dwarf mice were implanted in the submaxillary gland with a slow release pellet releasing 21 microgram GHRH (1-29)-NH(2)/day for 2 months. Control animals received placebo pellets at the same site. After 60 days, heart blood was collected and submaxillary glands were removed. Circulating levels of GH and IGF-I were significantly decreased (P<0.05) in dwarf mice in comparison with controls, and GHRH treatment did not modify either of these two parameters. Controls carrying GHRH pellets showed a significantly higher GH content (P<0.05) in the submaxillary gland than the placebo-treated normal mice. There were no differences between the IGF-I concentrations of placebo- and GHRH-treated salivary tissue from normal mice. Analysis of GH mRNA by RT-PCR followed by Southern blot revealed that GH transcripts were present in the salivary gland samples carrying the placebo pellets in both normal and dwarf mice. The expression of GH was significantly (P<0.05) increased by the GHRH pellets in salivary tissue from normal mice, but not in submaxillary glands from dwarf mice. Pit-1 mRNA was not detected in the GHRH-treated glands of normal and dwarf mice by RT-PCR or by Southern blot. Using these highly sensitive methods, we have been able to detect the transcription of both GH and Pit-1 in pituitaries from Pit-1-deficient Ames dwarf mice. The present experiment demonstrates that salivary tissue synthesizes GH when it is exposed to the influence of GHRH. Both basal and GHRH-induced salivary GH expression appear to be independent of Pit-1.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3