Involvement of the rapamycin-sensitive pathway in the insulin regulation of muscle protein synthesis in streptozotocin-diabetic rats

Author:

Grzelkowska K,Dardevet D,Balage M,Grizard J

Abstract

Insulin resistance in 3-day streptozotocin (STZ)-treated rats was manifested by the lack of antiproteolytic action of insulin as well as by a reduction of its stimulatory effect on protein synthesis (-60% compared with the control group) in epitrochlearis muscle incubated in vitro. In the present study, we have investigated the diabetes-associated alterations in the insulin signalling cascade, especially the phosphatidylinositol-3 kinase (PI-3 kinase)/p70 S6 kinase (p70(S6K)) pathway, in rat skeletal muscle. LY 294002, a specific inhibitor of PI-3 kinase, markedly decreased the basal rate of protein synthesis and completely prevented insulin-mediated stimulation of this process both in control and diabetic rats. Thus, PI-3 kinase is required for insulin-stimulated muscle protein synthesis in diabetic rats as in the controls. Rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), had no effect on the basal rate of protein synthesis in either of the experimental groups. In control rats, the stimulatory action of insulin on muscle protein synthesis was diminished by 36% in the presence of rapamycin, whereas in diabetic muscles this reduction amounted to 68%. The rapamycin-sensitive pathway makes a relatively greater contribution to the stimulatory effect of insulin on muscle protein synthesis in diabetic rats compared with the controls, due presumably to the preferential decrease in the rapamycin-insensitive component of protein synthesis. Neither basal nor insulin-stimulated p70(S6K) activity, a signalling element lying downstream of mTOR, were modified by STZ-diabetes.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3