Novel cardiac peptide hormone in several teleosts

Author:

Tervonen V,Ruskoaho H,Vuolteenaho O

Abstract

To find out the significance of the newest member of the natriuretic peptide family, salmon cardiac peptide (sCP), we have determined the distribution of the peptide and its mRNA as well as the tissue and plasma molecular forms in several teleosts. Using probes based on the salmon sCP cDNA in Northern blot analysis we found mRNA homologous to that of sCP to be present in the heart of 15 fish species representing nine different genera. We developed a specific RIA for the salmon 29 amino acid peptide to be able to study the distribution of the peptide in the heart and plasma of different fish species. Despite the probable interspecies differences in the peptide sequence, large quantities of immunoreactive sCP were found in the atrium, ventricle and plasma of most of the fish species studied, suggesting that a cardiac hormone homologous to sCP has an endocrine function in a large variety of teleost species. The molecular form of the hormone secreted and stored in the tissue was determined by gel filtration high pressure liquid chromatography. In salmon, as in most of the other fish species studied, the predominant immunoreactive sCP in plasma corresponded to the low molecular weight form, with a size similar to that of the biologically active 29 amino acid sCP (sCP-29), whereas the form stored in the heart corresponded to the high molecular weight pro-sCP-sized material. The form secreted by isolated perfused salmon ventricle, in the basal state as well as when mechanically loaded, was the sCP-29-sized peptide, thus ruling out the possibility that the conversion from high to low molecular weight material is caused by plasma proteases. In conclusion, sCP-like peptides are produced and secreted from the heart of a large number of different fish species. Their post-translational processing appears to be remarkably similar to that of mammalian atrial natriuretic peptide.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3