Low-dose IGF-I has no selective advantage over insulin in regulating glucose metabolism in hyperglycemic depancreatized dogs

Author:

Fisher SJ,Shi ZQ,Lickley HL,Efendic S,Vranic M,Giacca A

Abstract

At supraphysiological levels, IGF-I bypasses some forms of insulin resistance and has been proposed as a therapeutic agent in the treatment of diabetes. Unfortunately, side effects of high-dose IGF-I (100-250 microg/kg) have precluded its clinical use. Low-dose IGF-I (40-80 microg/kg), however, shows minimal side effects but has not been systematically evaluated. In our previous study under conditions of declining glucose, low-dose IGF-I infusion was more effective in stimulating glucose utilization, but less effective in suppressing glucose production and lipolysis than low-dose insulin. However, under conditions of hyperglycemia, we could not observe any differential effects between high-dose infusions of IGF-I and insulin. To determine whether the differential effects of IGF-I and insulin are dose-related or related to the prevailing glucose level, 3 h glucose clamps were performed in the same animal model as in the previous studies, i.e. the moderately hyperglycemic (175 mg/dl) insulin-infused depancreatized dog, with additional infusions of low-dose IGF-I (67.8 microg/kg, i.e. 29.1 microg/kg bolus plus 0.215 microg/kg( )per min infusion; n=5) or insulin 49.5 mU/kg (9 mU/kg bolus plus 0.45 mU/kg per min; n=7). As in the previous study under conditions of declining glucose, low-dose IGF-I had significant metabolic effects in vivo, in our model of complete absence of endogenous insulin secretion. Glucose production was similarly suppressed with both IGF-I and insulin, by 54+/-3 and 56+/-2% s.e. (P=NS) respectively. Glucose utilization was stimulated to the same extent (IGF-I 5.2+/-0.2, insulin 5.5+/-0.3 mg/kg per min, P=NS). Glucagon, free fatty acid, glycerol, alanine and beta-hydroxybutyrate, were suppressed, while lactate and pyruvate levels were raised, similarly with IGF-I and insulin. We conclude that: (i) differential effects of IGF-I and insulin may be masked under hyperglycemic conditions, independent of the hormone dose; (ii) low-dose IGF-I has no selective advantage over additional insulin in suppressing glucose production and lipolysis, nor in stimulating glucose utilization during hyperglycemia and subbasal insulin infusion when insulin secretion is absent, as in type 1 diabetes mellitus.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3