Up-regulation of GH-binding protein by mouse GH in transgenic mice overexpressing GH-releasing hormone

Author:

Gonzalez L,Sotelo AI,Bartke A,Turyn D

Abstract

To study the effects of homologous mouse GH (mGH) on the presence and characteristics of serum GH-binding protein (GHBP) we have used transgenic mice expressing GH-releasing hormone (GHRH) as a model. Chromatographic techniques allowed the characterization of GHBP bioactivity, and immunological techniques were used to determine its concentration and molecular components. Chromatographic separation of labeled human GH or mGH cross-linked to serum GHBPs showed two GH-binding serum fractions in normal as well as in transgenic mice serum. SDS-PAGE of this material revealed a specific band of 66 kDa and another higher molecular weight broad band, which, in the presence of 2-mercapto-ethanol, is converted into the 66 kDa fraction.Since normal mice serum has an mGH concentration of 0. 40+/-0.06 nM and a GHBP concentration of 5.7+/-1.1 nM, while the high-affinity site for mGH has a K(d)</+/-27 nM, only a small percentage (2.9%) of total serum mGH is bound to GHBP in the sera of these mice. In transgenic mice serum, where the mGH concentration is 60 times higher (23+/-2.7 nM), 22.5% of total serum mGH is bound to serum GHBP. These values agree with the experimental data (4+/-2% and 17+/-4% for normal and transgenic mice serum respectively).The concentration of GHBP in GHRH transgenic mice was found to be increased four- to tenfold, depending on the technique used. This increment closely resembles the increased concentration of GHBP in the serum of transgenic bovine GH (bGH) mice, in which peripheral bGH levels are grossly elevated. Our results support the idea that the circulating levels of mGH in normal mouse serum are capable of influencing the levels of GHBP in peripheral circulation in a way similar to that of bGH, in spite of the different affinities of these two hormones. The fact that the up-regulation of GHBP occurs, even though a small percentage of mGH is bound in these animals, strongly suggests the existence of a physiological function for GHBP. These results also question some of the assigned or attributed physiological roles of GHBP, at least in the mouse, since only a negligible percentage of total mGH would be prevented from degradation and/or renal filtration by binding to GHBP. This small percentage of bound mGH also invalidates its role as a reservoir or a buffer of mGH concentration during pulses of GH release or rapid changes of mGH levels. Our results also demonstrate the presence of high molecular weight forms of GH-GHBP complexes that could be dissociated by dilution or in the presence of 2-mercapto-ethanol.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3