Insufficient adaptive capability of pancreatic endocrine function in dexamethasone-treated ageing rats

Author:

Novelli M,De Tata V,Bombara M,Lorenzini A,Masini M,Pollera M,Bergamini E,Masiello P

Abstract

This study was aimed at exploring the capability of the pancreatic endocrine adaptive mechanisms of ageing Sprague-Dawley rats to counteract the metabolic challenge induced by the prolonged administration of dexamethasone (DEX) (0.13 mg/kg per day for 13 days). DEX treatment induced peripheral insulin resistance in 3-, 18- and 26-month-old rats, as indicated by the significant and persistent rise of plasma insulin levels in each age group (plasma insulin in 3-, 18- and 26-month-old rats from basal values of 4.3+/-0.8, 4.7+/-0.5 and 5.6+/-1.0 ng/ml (means+/-s.e.m.) respectively, rose to 11.9+/-1.7, 29.1+/-5.5 and 27.9+/-2.7 ng/ml respectively, after 9 days of administration). However, plasma glucose concentrations remained unchanged during the treatment in young rats, whereas they increased up to frankly diabetic levels in most 18-month-old and in all 26-month-old animals after a few days of DEX administration. Plasma free fatty acid concentrations increased 2-fold in 3- and 26-month-old rats and 4-fold in 18-month-old rats and could possibly be involved in the glucocorticoid-induced enhancement in insulin resistance, although they showed no significant correlation with glycaemic values. Incubation of pancreatic islets obtained from treated rats showed that DEX administration increased the insulin responsiveness of islets from not only younger but also older donors. However, in the islets of ageing rats, which already showed an age-dependent impairment of the sensitivity to glucose and other secretagogues, this enhancing effect was clearly attenuated with respect to the younger counterpart. Furthermore, DEX treatment depressed significantly the priming effect of glucose in islets isolated from all the three age groups. In conclusion, our results show that ageing rats are unable to counteract effectively a prolonged hyperglycaemic challenge as such induced by DEX administration. This homeostatic defect can be ascribed to the age-dependent failure of the endocrine pancreas to provide enough insulin to overcome the aggravation of an antecedent state of increased peripheral insulin resistance.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3