Regulation of insulin-like growth factor-binding protein-3 ternary complex in feline diabetes mellitus

Author:

Lewitt MS,Hazel SJ,Church DB,Watson AD,Powell SE,Tan K

Abstract

The 140 kDa ternary complex of insulin-like growth factor-binding protein-3 (IGFBP-3), IGFs and an acid-labile subunit (ALS) has previously been shown to be decreased in diabetes mellitus in humans and rats. We have studied IGF-I levels and ternary complex formation in normal and diabetic cats. Total IGF-I concentrations, measured by RIA using des(1-3)-IGF-I as tracer were (+/-s.e.m.) 54+/-13 nmol/l in eight normal and 227+/-57 nmol/l in eight diabetic cats (P<0.01). The size-distribution of IGFBPs in the cat circulation was determined by incubation with (125)I-IGF-II and Superose 12 chromatography. In normal animals 26+/-2% of the (125)I-IGF-II were in a 140 kDa form compared with 48+/-5% in diabetic cats (P<0.01). When samples from normal and diabetic animals were co-incubated 52+/-3% were at 140 kDa. A similar shift was seen when normal cat and normal human serum were co-incubated. A 2-fold increase in the 140 kDa form in diabetic cats was confirmed first by size-fractionating samples and then performing a ligand-binding assay with (125)I-IGF-I or -II and charcoal separation. SDS-PAGE and Western ligand blotting demonstrated a 45 kDa doublet (presumably IGFBP-3) and 30-35 kDa forms. There were no apparent differences between normal and diabetic profiles on SDS-PAGE, suggesting that a proportion of IGFBP-3 which circulates 'free' in normal cats forms a ternary complex in the diabetic circulation. We conclude that (i) in contrast to humans and rats, ALS is the limiting factor for ternary complex formation in normal cats, (ii) ALS concentrations increase in feline diabetes mellitus and, by promoting ternary complex formation, this leads to an increase in total IGF-I concentrations, and (iii) total IGF-I concentrations may not be reliable in the diagnosis of acromegaly in diabetic cats.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3