Expression of an in vitro biologically active equine LH/CG without C-terminal peptide (CTP) and/or beta26-110 disulphide bridge

Author:

Galet C,Chopineau M,Martinat N,Combarnous Y,Guillou F

Abstract

The C-terminal region of the beta subunit of the human chorionic gonadotrophin (hCG) is implied in heterodimer stability (beta26-110 disulphide bridge), in vitro LH bioactivity (region beta102-110) and in in vivo LH bioactivity (beta CTP). Like the hCG beta, the equine eLH and eCG beta subunits, also possess a C-terminal extension (CTP). But, in contrast to hCG, eLH and eCG bind to both LH and FSH receptors in species other than the horse. This allows investigation of the roles of the beta subunit C-terminal region of a eLH/CG recombinant molecule on both LH and FSH activities. To do so, the CTP was deleted and/or the beta26-110 disulphide bond was mutated and the resulting mutated beta subunits were transiently co-expressed with common alpha subunit in COS7 cells. These regions were also deleted in a betaalphaeLH/CG single chain also expressed in COS7 cells. The hormones produced were characterized by different ELISAs and in vitro LH and FSH bioassays. Mutation of the 26-110 disulphide bond and deletion of the betaCTP led to a decrease in eLH/CG heterodimer production. Double mutation promoted an additive effect on production of the heterodimer and of the corresponding tethered eLH/CG. The elimination of the beta26-110 disulphide bond in the betaalpha single chain had no effect on its production. However, neither the 26-110 disulphide bond nor the CTP mutations affected dimer stability and bioactivities of the secreted heterodimers and/or single chain molecules. Therefore, in contrast to hCG, the 26-110 S-S bond of the recombinant eLH/CG beta subunit does not seem to be essential for eLH/CG dimer stability upon secretion and expressing LH and FSH bioactivities.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3