Changes in the expression of neurohypophyseal prolactins during the estrous cycle and after estrogen treatment

Author:

Torner L,Nava G,Duenas Z,Corbacho A,Mejia S,Lopez F,Cajero M,Martinez de la Escalera G,Clapp C

Abstract

Estrogens are recognized regulators of the expression of neurohypophyseal hormones and of anterior pituitary prolactin (PRL). Here we have investigated whether the levels of PRL mRNA and of 23 and 14 kDa PRL variants present in the hypothalamo-neurohypophyseal system change during the estrous cycle or in response to estrogen treatment. The reverse transcription polymerase chain reaction (RT-PCR) was performed to examine PRL mRNA expression in isolated paraventricular (PVN) and supraoptic (SON) hypothalamic nuclei. In both nuclei PRL mRNA levels appeared higher in cycling females than in male rats, with the highest level occurring at estrus. This increase may involve estrogen action, since estrogen administration to ovariectomized rats was associated with apparently higher PRL mRNA levels in both the PVN and SON. Expression of the PRL gene at these sites may occur via both transcriptional factor Pit-1-dependent and -independent mechanisms. RT-PCR detected the mRNA for Pit-1 in the PVN but only at estrus. The concentration of the 23 kDa immunoreactive PRL determined in the neurohypophysis was significantly higher during estrus and after estrogen treatment. However, no difference was detected in the levels of the neurohypophyseal 14 kDa PRL-like fragment along the estrous cycle nor after estrogen administration. This lack of parallelism between neurohypophyseal PRLs could relate to an estrogen-induced inhibition of the proteolysis of 23 kDa PRL at this site, since estrogen treatment reduced the activity of neurohypophyseal proteolytic enzymes able to cleave PRL. Altogether our results are consistent with estrogens having a stimulatory effect on PRL gene expression in the hypothalamo-neurohypophyseal system and a concomitant inhibitory action on PRL proteolysis at this site.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3