Prolactin induction of insulin gene expression: the roles of glucose and glucose transporter-2

Author:

Petryk A,Fleenor D,Driscoll P,Freemark M

Abstract

Previous studies have shown that lactogenic hormones stimulate beta-cell proliferation and insulin production in pancreatic islets. However, all such studies have been conducted in cells incubated in medium containing glucose. Since glucose independently stimulates beta-cell replication and insulin production, it is unclear whether the effects of prolactin (PRL) on insulin gene expression are exerted directly or through the uptake and/or metabolism of glucose. We examined the interactions between glucose and PRL in the regulation of insulin gene transcription and the expression of glucose transporter-2 (glut-2) and glucokinase mRNAs in rat insulinoma (INS-1) cells. In the presence of 5.5 mM glucose, the levels of preproinsulin and glut-2 mRNAs in PRL-treated cells exceeded the levels in control cells (1.7-fold, P<0.05 and 2-fold, P<0.05 respectively). The maximal effects of PRL were noted at 24-48 h of incubation. PRL had no effect on the levels of glucokinase mRNA. The higher levels of glut-2 mRNA were accompanied by an increase in the number of cellular glucose transporters, as demonstrated by a 1. 4- to 2.4-fold increase in the uptake of 2-deoxy-d-[(3)H]glucose in PRL-treated INS-1 cells (P<0.001). These findings suggested that the insulinotropic effect of PRL is mediated, in part, by induction of glucose transport and/or glucose metabolism. Nevertheless, even in the absence of glucose, PRL stimulated increases in the levels of preproinsulin mRNA (3.4-fold higher than controls, P<0.0001) and glut-2 mRNA (2-fold higher than controls, P<0.01). These observations suggested that PRL exerts glucose-independent as well as glucose-dependent effects on insulin gene expression. Support for this hypothesis was provided by studies of insulin gene transcription using INS-1 cells transfected with a plasmid containing the rat insulin 1 promoter linked to a luciferase reporter gene. Glucose and PRL, alone and in combination, stimulated increases in cellular luciferase activity. The relative potencies of glucose (5.5 mM) alone, PRL alone, and glucose plus PRL in combination were 2.2 (P<0.001), 3.4 (P<0.01), and 7.9 (P<0.0001) respectively. Our findings suggest that glucose and PRL act synergistically to induce insulin gene transcription.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The impact of sleep disorders in the formation of hypertension;Arterial Hypertension;2022-12-29

2. Hyperprolactinemia and insulin resistance;Endokrynologia Polska;2022-12-22

3. PRL/PRLR Can Promote Insulin Resistance by Activating the JAK2/STAT5 Signaling Pathway;Computational and Mathematical Methods in Medicine;2022-10-04

4. Metabolic effects of prolactin;Frontiers in Endocrinology;2022-09-27

5. The adaptation of maternal energy metabolism to lactation and its underlying mechanisms;Molecular and Cellular Endocrinology;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3