beta-Subunit 102-104 residues are crucial to confer FSH activity to equine LH/CG but are not sufficient to confer FSH activity to human CG

Author:

Chopineau M,Martinat N,Galet C,Guillou F,Combarnous Y

Abstract

Horse LH/CG (eLH/CG) and donkey LH/CG (dkLH/CG) are strictly LH-specific in their respective homologous species. However, both bind to the FSH receptors from non-equid species, whereas the zebra hormone (zbLH/CG) does not. The FSH/LH ratio of eLH/CG and of the alphadkbetae hybrid is about tenfold higher than that of dkLH/CG and of the alphaebetadk hybrid, showing that the betae subunit contains the structural features responsible for the high FSH activity of eLH/CG. Only six amino acid positions (51, 94, 95, 102, 103 and 106) are unique to the betae subunit when compared with the betadk and betazb subunits. The Gly-Pro and Val-Phe sequences in positions 102-103 of betadk and betae respectively were swapped by site-directed mutations and the mutated beta-subunits cDNAs were cotransfected in COS cells with either alphae or alphadk subunit cDNA. Other mutations were also introduced in 102-103 dkLH/CG beta-subunit: Ala-Ala, Gly-Ala or Ala-Pro. These mutations with Ala-Ala, Gly-Ala or Ala-Pro in the 102-103 betadkLH/CG subunit did not change the FSH/LH ratio of dkLH/CG but the Gly(102)-Pro(103)-->Val(102)-Phe(103) mutation promoted a marked increase in the FSH/LH activity ratio. This was observed with the two heterodimers containing alphae or alphadk. Conversely, the Val(102)-Phe(103) mutation in betae led to a dramatic drop in FSH/LH activity ratio of eLH/CG, to a level similar to that of dkLH/CG. Since all FSHs possess a Gly residue at position 104, we introduced the Gly(102)-Pro(103)-Arg(104)-->Val(102)-Phe(103)-Gly(104) mutation in betadk with the expectation that the increase in FSH activity observed with the Gly(102)-Pro(103)-->Val(102)-Phe(103) mutation could be potentiated. In fact, the additional Arg(104)-->Gly(104) mutation was found to abolish the increase in FSH activity observed with Gly(102)-Pro(103)-->Val(102)-Phe(103). Mutations Gly(102)-Pro(103)-->Val(102)-Arg(103) or Gly(102)-Pro(103)-Lys(104)--> Val(102)-Arg(103)-Gly(104) were also introduced in human CGbeta (hCGbeta) to compare the impact of these amino acid changes in the well-studied gonadotrophin hCG. The betahCG mutants obtained, co-expressed either with the human or the horse alpha-subunit, did not display any FSH activity. In conclusion, the 102-104 sequence in eLH/CG beta-subunits appears to be of utmost importance for their binding to FSH receptors. However, these results obtained with equid beta-subunits are not transposable to other gonadotrophins as similar mutations in hCGbeta did not lead to any increase in FSH activity.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3