Tri-iodothyronine induces proliferation in cultured bovine thyroid cells: evidence for the involvement of epidermal growth factor-associated tyrosine kinase activity

Author:

Di Fulvio M,Coleoni AH,Pellizas CG,Masini-Repiso AM

Abstract

The effects of the tri-iodothyronine (T(3)) secreted by thyroid cells on the growth of the thyrocyte are poorly known. In this study we analyzed the effects of T(3) on the proliferation of bovine thyroid follicles in primary culture previously depleted of endogenous T(3). Cellular deoxiribonucleic acid (DNA) synthesis, determined by [(3)H]thymidine incorporation, was stimulated by T(3) (0.1-5.0 nM) for 24 h in a concentration-dependent fashion with a maximal effect at 1.0 nM T(3) (P<0.01). This T(3) action was time-dependent when assayed from 12 to 72 h. The induction of mitogenic activity was corroborated by the increase in proliferating cell nuclear antigen (PCNA) measured by Western blot analysis. PCNA increased after treatment with T(3) (0.1-5.0 nM) in a concentration-dependent manner. Since T(3) modifies the activity of growth factors whose actions are mainly mediated by tyrosine kinase (TK) activation in diverse cellular types, we assayed the effects of genistein, a general TK inhibitor, and tyrphostin A25, a specific epidermal growth factor (EGF)-receptor (EGFR)-dependent TK activity inhibitor, on the proliferative effects of T(3). The T(3)-induced [(3)H]thymidine incorporation was inhibited by both agents in a concentration-dependent manner. A significant increase in the total TK activity measured in cellular protein extracts was induced by 0.5 and 1.0 nM T(3) (P<0.001). Tyrosine phosphorylation of the EGFR was also stimulated by T(3) (P<0.001) with no change in the EGFR expression as determined by Western blot analysis. Both, the T(3)-stimulated [(3)H]thymidine incorporation and the TK activity were inhibited by a anti-mouse EGF antibody. These results lead us to propose that T(3) could operate as a proliferative agent in bovine thyroid cells through a mechanism involving an autocrine/paracrine EGF/EGFR-dependent regulation.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3