Hypophysiotropic role of RFamide-related peptide-3 in the inhibition of LH secretion in female rats

Author:

Murakami Masahiro,Matsuzaki Toshiya,Iwasa Takeshi,Yasui Toshiyuki,Irahara Minoru,Osugi Tomohiro,Tsutsui Kazuyoshi

Abstract

Gonadotropin-inhibitory hormone (GnIH), a newly discovered hypothalamic RFamide peptide, inhibits reproductive activity by decreasing gonadotropin synthesis and release in birds. The gene of the mammalian RFamide-related peptides (RFRP) is orthologous to the GnIH gene. This Rfrp gene gives rise to the two biologically active peptides RFRP-1 (NPSF) and RFRP-3 (NPVF), and i.c.v. injections of RFRP-3 suppress LH secretion in several mammalian species. In this study, we show whether RFRP-3 affects LH secretion at the pituitary level and/or via the release of GnRH at the hypothalamus in mammals. To investigate the suppressive effects of RFRP-3 on the mean level of LH secretion and the frequency of pulsatile LH secretion in vivo, ovariectomized (OVX) mature rats were administered RFRP-3 using either i.c.v. or i.v. injections. Furthermore, the effect of RFRP-3 on LH secretion was also investigated using cultured female rat pituitary cells. With i.v. administrations, RFRP-3 significantly reduced plasma LH concentrations when compared with the physiological saline group. However, after i.c.v. RFRP-3 injections, neither the mean level of LH concentrations nor the frequency of the pulsatile LH secretion was affected. When using cultured pituitary cells, in the absence of GnRH, the suppressive effect of RFRP-3 on LH secretion was not clear, but when GnRH was present, RFRP-3 significantly suppressed LH secretion. These results suggest that RFRP-3 does not affect LH secretion via the release of GnRH, and that RFRP-3 directly acts upon the pituitary to suppress GnRH-stimulated LH secretion in female rats.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3