Differential regulation of the endoplasmic reticulum stress response in pancreatic β-cells exposed to long-chain saturated and monounsaturated fatty acids

Author:

Diakogiannaki Eleftheria,Welters Hannah J,Morgan Noel G

Abstract

Exposure of pancreatic β-cells to long-chain fatty acids leads to the activation of some components of the endoplasmic reticulum (ER) stress pathway and this mechanism may underlie the ability of certain fatty acids to promote β-cell death. We have studied ER stress in BRIN-BD11 β-cells exposed to either the saturated fatty acid palmitate (C16:0) or the monounsaturated palmitoleate (C16:1). Palmitate (0.025–0.25 mM) induced the expression of various markers of the RNA-dependent protein kinase-like ER eukaryotic initiation factor 2α (eIF2α) kinase (PERK)-dependent pathway of ER stress (phospho-eIF2α; ATF4, activating transcription factor 4 and C/EBP homologous protein (CHOP-10)) although it failed to promote the expression of the ER chaperone GRP78. By contrast, palmitoleate did not induce any markers of the ER stress pathway even at concentrations as high as 1 mM. When palmitate and palmitoleate were added in combination, a marked attenuation of the ER stress response occurred. Under these conditions, the levels of phospho-eIF2α, ATF4 and CHOP-10 were reduced to less than those found in control cells. Palmitoleate also attenuated the ER stress response to the protein glycosylation inhibitor, tunicamycin, and improved the viability of the cells exposed to this agent. Exposure of the BRIN-BD11 cells to the protein phosphatase inhibitor, salubrinal, in the absence of fatty acids resulted in increased eIF2α phosphorylation but this was abolished by co-incubation with palmitoleate. We conclude that saturated fatty acids activate components of the PERK-dependent ER stress pathway in β-cells, ultimately leading to increased apoptosis. This effect is antagonised by monounsaturates that may exert their anti-apoptotic actions by regulating the activity of one or more kinase enzymes involved in mediating the phosphorylation of eIF2α.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3