Altered bone mass, geometry and mechanical properties during the development and progression of type 2 diabetes in the Zucker diabetic fatty rat

Author:

Prisby Rhonda D,Swift Joshua M,Bloomfield Susan A,Hogan Harry A,Delp Michael D

Abstract

Osteopenia and an enhanced risk of fracture often accompany type 1 diabetes. However, the association between type 2 diabetes and bone mass has been ambiguous with reports of enhanced, reduced, or similar bone mineral densities (BMDs) when compared with healthy individuals. Recently, studies have also associated type 2 diabetes with increased fracture risk even in the presence of higher BMDs. To determine the temporal relationship between type 2 diabetes and bone remodeling structural and mechanical properties at various bone sites were analyzed during pre-diabetes (7 weeks), short-term (13 weeks), and long-term (20 weeks) type 2 diabetes. BMDs and bone strength were measured in the femora and tibiae of Zucker diabetic fatty rats, a model of human type 2 diabetes. Increased BMDs (9–10%) were observed in the distal femora, proximal tibiae, and tibial mid- shafts in the pre-diabetic condition that corresponded with higher plasma insulin levels. During short- and long-term type 2 diabetes, various parameters of bone strength and BMDs were lower (9–26%) in the femoral neck, distal femora, proximal tibiae, and femoral and tibial mid-shafts. Correspondingly, blood glucose levels increased by 125% and 153% during short- and long-term diabetes respectively. These data indicate that alterations in BMDs and bone mechanical properties are closely associated with the onset of hyperinsulinemia and hyperglycemia, which may have direct adverse effects on skeletal tissue. Consequently, disparities in the human literature regarding the effects of type 2 diabetes on skeletal properties may be associated with the bone sites studied and the severity or duration of the disease in the patient population studied.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3