Hydroxyestrogens inhibit angiogenesis in swine ovarian follicles

Author:

Basini G1,Bussolati S1,Santini S E1,Bianchi F1,Careri M1,Mangia A1,Musci M1,Grasselli F1

Affiliation:

1. 1Dipartimento di Produzioni AnimaliBiotecnologie Veterinarie, Qualità e Sicurezza degli Alimenti - Sezione di Fisiologia Veterinaria2Dipartimento di Chimica Generale ed InorganicaChimica Analitica, Chimica Fisica, Università degli Studi di Parma, Via del Taglio, 8, Viale Usberti 17/A, 43100 Parma, Italy

Abstract

The rapid, controlled, and cyclical nature of angiogenesis in the ovarian follicle suggests the potential for sex steroids to influence neovascularization. Angiogenesis is regulated by a local balance between the levels of endogenous stimulators and inhibitors. Multiple lines of evidence suggest that estrogens stimulate angiogenesis via effects on endothelial cells. However, it is of outstanding value to investigate the negative control of this process. Since the main estrogen metabolites, 2-hydroxyestradiol and 4-hydroxyestradiol (4-OHE2) have been demonstrated to function as anti-estrogen in several estrogen-dependent organs; the aim of this study was to investigate their potential involvement in the modulation of follicular angiogenesis. Hydroxyestrogens were quantified in swine follicular fluid and their effects were studied on granulosa cell vascular endothelial growth factor (VEGFA) production and tested in an angiogenesis bioassay. Our study documents that these molecules are physiologically present in swine follicular fluid and their concentrations significantly (P<0.001) increase during follicle development. Moreover, angiogenesis bioassay revealed that both hydroxyestrogens significantly (P<0.001) inhibited new vessel growth. We evidenced that the most potent negative effect is mediated by 4-OHE2. The anti-angiogenic potential of this molecule is also supported by its ability to inhibit (P<0.001) VEGFA production by granulosa cells. Increased knowledge in this area is of utmost importance for future therapeutic options to contrast infertility disorders associated with aberrant angiogenesis; this would be also very useful for the treatment of diseases characterized by disregulated angiogenesis and vascular regression.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3