Author:
Åberg N David,Johansson Inger,Åberg Maria A I,Lind Johan,Johansson Ulf E,Cooper-Kuhn Christiana M,Kuhn H Georg,Isgaard Jörgen
Abstract
IGF-I treatment has been shown to enhance cell genesis in the brains of adult GH- and IGF-I-deficient rodents; however, the influence of GH therapy remains poorly understood. The present study investigated the effects of peripheral recombinant bovine GH (bGH) on cellular proliferation and survival in the neurogenic regions (subventricular zone (SVZ), and dentate gyrus of the hippocampus), as well as the corpus callosum, striatum, parietal cortex, and piriform cortex. Hypopituitarism was induced in female rats by hypophysectomy, and the rats were supplemented with thyroxine and cortisone acetate. Subsequently, the rats received daily s.c. injections of bGH for either 6 or 28 days respectively. Following 5 days of peripheral bGH administration, the number of bromodeoxyuridine (BrdU)-positive cells was increased in the hippocampus, striatum, parietal cortex, and piriform cortex after 6 and 28 days. In the SVZ, however, BrdU-positive cells increased only after 28 days of bGH treatment. No significant change was observed in the corpus callosum. In the hippocampus, after 28 days of bGH treatment, the number of BrdU/NeuN-positive cells was increased proportionally to increase the number of BrdU-positive cells. 3H-thymidine incorporation in vitro revealed that 24 h of bGH exposure was sufficient to increase cell proliferation in adult hippocampal progenitor cells. This study shows for the first time that 1) peripheral bGH treatment increased the number of newborn cells in the adult brain and 2) bGH exerted a direct proliferative effect on neuronal progenitor cells in vitro.
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献