Epigenetic change in pituitary tumorigenesis.

Author:

Farrell W E,Clayton R N

Abstract

Throughout the genome CpG dinucleotides are found at one-fifth of their expected frequency and their rarity is further marked by the fact that 70% are methylated. In contrast, CpG islands (CGI), found associated with the promoters of many genes, have maintained their expected frequency of this dinucleotide, and remain unmethylated. Inappropriate methylation of CGIs is associated with histone deacetylation and gene silencing, while methylation of CpGs outside of CGIs is associated with significantly higher mutation rates. Methylation of CGIs is a frequent event in numerous tumour types including those that arise within the pituitary gland. Several studies now show highly frequent methylation of the p16 gene that is significantly associated with loss of cognate protein and that appears to be an early change in pituitary tumorigenesis. Collectively, studies show that somatotrophinomas are an infrequent target for p16 CGI methylation. However, in this pituitary tumour subtype, loss of pRb is associated with either CGI methylation or micro-deletion within the protein-pocket binding domain. As in other tumour types loss of p16 or RB1 appear to be mutually exclusive events in non-functional adenomas and somatotrophinomas respectively. Investigation of the Death Associated Protein Kinase gene shows that loss of its protein (DAPK), a pro-apoptotic molecule, in pituitary tumours is also associated with either methylation or deletion within its associated CGI. In the case of DAPK, however, these changes segregate with invasive pituitary tumours irrespective of tumour subtype. Methylation represents a positive signal that can be detected with exquisite sensitivity; in addition, this change targets multiple genes that show tumour type specificity. Taken together, the detection of DNA methylation changes, using either a panel of predefined marker-islands, or CGI arrays, provides the opportunity to generate "methylation profiles". This new knowledge will increase our understanding of tumour biology and could ultimately aid medical management in these different tumour types, including those of pituitary origin.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3