ATP binding cassette transporters and drug resistance in breast cancer.

Author:

Leonessa F,Clarke R

Abstract

Resistance to chemotherapy is a critical issue in the management of breast cancer patients. The nature of clinical drug resistance is likely to be multifactorial. However, in the last decade considerable attention has been dedicated to the role played by membrane transporter proteins belonging to the ATP binding cassette protein superfamily, and in particular by the MDR1 product P-glycoprotein (Pgp) and the multidrug resistance protein (MRP1). Heterogeneity of results is a common feature of studies evaluating the expression and prognostic role of these proteins, due to both methodological and biological factors. Nonetheless, Pgp and MRP1 are detected in a significant proportion of untreated breast cancers (on average 40 and 50% respectively, by immunohistochemistry), without a clear and consistent association with cancer stage. Exposure to chemotherapy increases the expression of both proteins. In vitro studies on primary cultures of breast cancer cells obtained at surgery consistently show an association between Pgp (protein) or MDR1 (mRNA) expression and resistance to chemotherapy. However, the correlation with clinical drug resistance is not as well defined. A stronger association of Pgp/MDR1 with response rates has been observed when expression or an increase in expression are detected immediately following chemotherapy. Correlations with prognosis appear more evident in studies using immunohistochemistry, in adjuvant and neoadjuvant settings. Evidence of clinical reversal of drug resistance by verapamil suggests a functional role of Pgp in drug resistance, although the significance of the evidence is generally weakened by poor trial designs. Future studies should take into account the multifactorial nature of drug resistance in breast cancer and use standardized approaches with adequate controls. Expression studies should be complemented by well-designed trials of drug-resistance reversal using target-specific chemosensitizing agents, and relating the results to the levels of expression of the target proteins.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3