How to target estrogen receptor-negative breast cancer?

Author:

Rochefort H,Glondu M,Sahla M E,Platet N,Garcia M

Abstract

Estrogen receptor (ER)-positive breast cancers generally have a better prognosis and are often responsive to anti-estrogen therapy, which is the first example of a successful therapy targeted on a specific protein, the ER. Unfortunately ER-negative breast cancers are more aggressive and unresponsive to anti-estrogens. Other targeted therapies are thus urgently needed, based on breast cancer oncogene inhibition or suppressor gene activation as far as molecular studies have demonstrated the alteration of expression, or structure of these genes in human breast cancer. Using the MDA-MB.231 human breast cancer cell line as a model of ER-negative breast cancers, we are investigating two of these approaches in our laboratory. Our first approach was to transfect the ER or various ER-deleted variants into an ER-negative cell line in an attempt to recover anti-estrogen responsiveness. The unliganded receptor, and surprisingly estradiol, were both found to inhibit tumor growth and invasiveness in vitro and in vivo. The mechanisms of these inhibitions in ER-negative cancer cells are being studied, in an attempt to target the ER sequence responsible for such inhibition in these cancer cells. Another strategy is trying to inhibit the activity or expression of an oncogene specifically overexpressed in most breast cancers. This approach was recently shown by others to be efficient in breast cancer therapy with HER2-Neu oncogene amplification using Herceptin. Without excluding other molecular putative targets, we have focused our research on cathepsin D as a potential target, since it is often overexpressed in aggressive human breast cancers, including ER-negative tumors, and rarely associated with HER2-Neu amplification. Our first results obtained in vitro on cell lines and in vivo in tumor xenografts in nude mice, illustrate that the mode of action of cathepsin D in breast cancer is useful to guide the development of these therapies. In the past 20 years we have learned that the action of cathepsin D is complex and involves both intracellular and extracellular activities due to its proteolytic activity and to interactions with membrane components without catalytic activity. Each of these mechanisms could be potentially inhibited in an attempt to prevent tumor growth. Breast cancer is a very heterogeneous and multigenic disease and different targeted therapies adapted to each category of breast cancer are therefore required. Validated assays in the primary tumor of molecular markers such as ER, HER2-Neu and cathepsin D should help to predict which targeted therapy should be applied to cure breast cancer patients.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3