Control of ovarian steroidogenesis by insulin-like peptides in the blowfly (Phormia regina)

Author:

Maniere G,Rondot I,Bullesbach EE,Gautron F,Vanhems E,Delbecque JP

Abstract

This study investigated the ability of insulin and of insect insulin-like peptides (ILPs) to stimulate ovarian steroidogenesis in the blowfly Phormia regina. Bovine insulin was active on ovaries isolated in vitro, which showed an age-dependent sensitivity; this peptide progressively stimulated steroidogenesis in ovaries isolated from the third day after adult molt, but not in younger ones, and had maximal activity after the fifth day. This stimulatory effect was observed equally from females reared in the presence or in the absence of males, excluding a regulatory effect of mating. The mode of action of insulin in blowflies did not involve cAMP, but triggered a specific and well-conserved transduction cascade. In particular, a peroxovanadium compound, known to activate specifically the insulin receptor in mammals, also stimulated blowfly ovarian steroidogenesis in vitro. Conversely, chemicals known to inhibit the mammalian insulin receptor or downstream elements of its signaling pathway, such as LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), were able to prevent the steroidogenic action of bovine insulin on fly ovaries. Extracts from the median neurosecretory cells (MNCs) of blowfly brains, which are known to contain endogenous ILPs, stimulated ovarian steroidogenesis very efficiently and were also sensitive to inhibition by LY294002. These experiments indicated the involvement of PI3K in the mode of action of MNC extracts and substantiated that their endogenous ILPs are involved in the regulation of ovarian steroidogenesis. This conclusion was corroborated by the effects of synthetic bombyxin II, an ILP originating from silkworm MNCs, which also stimulated steroidogenesis in isolated blowfly ovaries. Altogether, these data suggest that insulinlike neurohormones from MNCs play a crucial role as steroidogenic gonadotropins in female flies.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3