Activin and inhibin receptor gene expression in the ewe pituitary throughout the oestrous cycle

Author:

Fafioffe A,Ethier JF,Fontaine J,JeanPierre E,Taragnat C,Dupont J

Abstract

In mammals, activin and inhibin are important regulators of FSH secretion. Previous studies have demonstrated that primary ovine pituitary cells express different activin receptor subtypes: activin receptor-like (ALK)2, ALK4, activin type II receptor A (ActRIIA), ActRIIB and Smad proteins in vitro. Here, we have carried out physiological studies to investigate the pattern of mRNA expression of the activin receptor subunits in the ewe pituitary throughout the oestrous cycle. The oestrous cycles of ewes were synchronized with progestagen sponges. The animals were killed 36 h (before the preovulatory surge, n=4), 48 h (during the preovulatory surge, n=4), 72 h (during the second surge of FSH, n=6) and 192 h (during the luteal phase, n=4) after sponge removal. Using Northern blots, we have shown that the levels of ALK2, ALK4 and ActRIIB mRNA were significantly higher before the preovulatory surge and during the secondary surge of FSH as compared with both during the preovulatory surge and the luteal phase, whereas the level of the ActRIIA mRNA was similar throughout the oestrous cycle. Using Western blots we have also demonstrated that the level of phospho-Smad2 did not vary during the reproductive cycle. Inhibin binding protein (InhBP/p120) and the transforming growth factor-beta type III receptor, betaglycan, have been identified as putative inhibin co-receptors. In this study, we cloned a fragment of both InhBP/p120 and betaglycan cDNAs in the ewe and showed by Northern blot that pituitary betaglycan and InhBP/p120 mRNA levels did not fluctuate across the oestrous cycle nor did they correlate with serum FSH levels.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3