Unfilled nuclear oestrogen receptors in the rat brain and pituitary gland

Author:

Clark C. R.,MacLusky N. J.,Naftolin F.

Abstract

This study describes the presence of a population of oestrogen receptors in cell nuclei from the pituitary gland and brain of untreated and oestradiol-treated ovariectomized rats. The receptors behaved as if they were not occupied by oestradiol. These 'unfilled' oestrogen receptors could be distinguished from occupied nuclear receptor sites on the basis of their ability to bind [3H]oestradiol at low temperatures (0–4 °C). Occupied receptors bound labelled [3H]oestradiol only under exchange conditions at an increased temperature (25 °C). Unfilled and occupied nuclear receptors were physicochemically similar in terms of sedimentation coefficients in sucrose density gradients containing 0·4 m-KC1 (4–5S), equilibrium dissociation constants for reaction with [3H]oestradiol (0·2–0·6 nmol/l) and ligand specificity. In ovariectomized rats, unfilled receptors constituted more than 75 % of the total nuclear receptor population. One hour after i.v. treatment with oestradiol (3·6 μg/kg), both total and unfilled nuclear receptor concentrations increased and then subsequently declined over the next 12 h. The increase in unfilled sites was, however, proportionately less than that occurring in the filled component; at 1 h after oestradiol injection unfilled sites constituted less than 20% of the receptors present in brain and pituitary cell nuclei. The physiological significance of unfilled nuclear oestrogen receptors remains unknown. The observations that they exist in various oestrogen target tissues and that their levels are influenced by oestradiol treatment suggest a possible role for these receptors in the mechanism of oestrogen action.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3